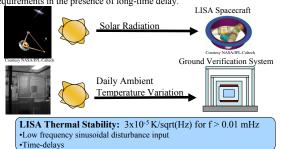
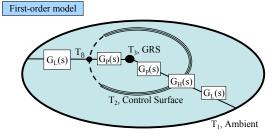


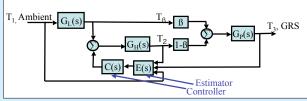
Active Thermal Control Experiments for LISA Ground Verification Testing


Set-point values

Online Monitoring System


Sei Higuchi† and Daniel B. DeBra Stanford University †seihiguchi@stanford.edu

MOTIVATION & OBJECTIVE


- •Thermal noise due to solar irradiation, or temperature gradients across the proof mass housing is expected to be significant disturbance source to the LISA noise budgets:
 - •The total acceleration disturbances to each proof mass $\leq 3 \times 10^{-15} \text{ m/s}^2$ sqrt(Hz) over 0.1 mHz to 1 Hz
 - •Optical path length variations on each optical bench < 40 pm/sqrt(Hz) over 0.1 mHz to 1 Hz
- •A thermal control system is being developed for LISA GRS ground testing which could be used as in-flight thermal control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations.
- •For spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long-time delay.

CONTROL SYSTEM DESIGN AND SYNTHESIS

Feedback control block diagram of the entire system

FUTURE WORK: Disturbance Rejection Control for Nonlinear MIMO Time-delay Systems

Nonlinear MIMO TDS


 $x(k+1) = f(x(k), u(k-\tau))$

y(k) = g(x(k))

where

 $x(k) \in \Re^n, u(k) \in \Re^m$

The controller minimizes the following

3-D Thermal Model

CONCLUDING REMARKS

- •Suppressed the ambient temperature variations by a factor of 1,000 down to below 1 mHz using a simple control law and low-cost thermal insulations : 1 mK/sqrt(Hz) for f > 0.7 mHz
- •To satisfy the LISA thermal stability requirements 1) measurement noise reduction and 2) control law refinement are necessary
- •Next problem: regulating control for non-linear MIMO time-delay systems

Heating Lamps Daily Ambient Temperature Variation Clear Plastic Thermal Tent 2" of foil-covered Igloo 2 polystyrene foam GRS test-object in a double-walled enclosure Refrigerator provides cold air flow (heat sink) Heating pads Sensor **GPIB**

EXPERIMENTAL SYSTEM

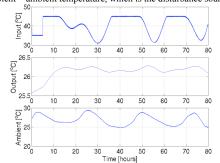
EXPERIMENTAL RESULTS

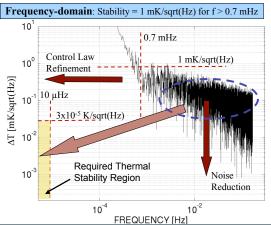
Controller

Actuator

Linux Box

Time-domain: 80-hour test


- The control system (PI + Smith's regulator) is activated.
 - •Input = heating pad temperature
 - •Output = GRS test-object temperature


Heater

Air-flow

Ambient

•Ambient = ambient temperature, which is the disturbance source

Reference

[1] S. Higuchi, G. Allen, W. Bencze, R. Byer, A. Dang, D. Lauben, S. Dorlybounxou, J. Hanson, L. Ho, G. Huffman, F. Sabur, K. Sun, R. Tavernetti, L. Rolih, R. Van Patten, J. Wallace, S. Williams, "High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing," Journal of Physics: Conference Series, 32:125-131, 2006.